Earn income with your .NET skills
Sign up and we'll send you the best freelance opportunities straight to your inbox.
We're building the largest self-service freelancing marketplace for people like you.

C# Iterator

The Iterator design pattern provides a way to access the elements of an aggregate object sequentially without exposing its underlying representation.

Frequency of use:
high
C# Design Patterns

UML class diagram

A visualization of the classes and objects participating in this pattern.


Participants

The classes and objects participating in this pattern include:

  • Iterator  (AbstractIterator)
    • defines an interface for accessing and traversing elements.
  • ConcreteIterator  (Iterator)
    • implements the Iterator interface.
    • keeps track of the current position in the traversal of the aggregate.
  • Aggregate  (AbstractCollection)
    • defines an interface for creating an Iterator object
  • ConcreteAggregate  (Collection)
    • implements the Iterator creation interface to return an instance of the proper ConcreteIterator

Structural code in C#

This structural code demonstrates the Iterator pattern which provides for a way to traverse (iterate) over a collection of items without detailing the underlying structure of the collection.

using System;
using System.Collections.Generic;

namespace Iterator.Structural
{
    /// <summary>
    /// Iterator Design Pattern
    /// </summary>

    public class Program
    {
        public static void Main(string[] args)
        {
            ConcreteAggregate a = new ConcreteAggregate();
            a[0] = "Item A";
            a[1] = "Item B";
            a[2] = "Item C";
            a[3] = "Item D";

            // Create Iterator and provide aggregate

            Iterator i = a.CreateIterator();

            Console.WriteLine("Iterating over collection:");

            object item = i.First();

            while (item != null)
            {
                Console.WriteLine(item);
                item = i.Next();
            }

            // Wait for user

            Console.ReadKey();
        }
    }

    /// <summary>
    /// The 'Aggregate' abstract class
    /// </summary>

    public abstract class Aggregate
    {
        public abstract Iterator CreateIterator();
    }

    /// <summary>
    /// The 'ConcreteAggregate' class
    /// </summary>

    public class ConcreteAggregate : Aggregate
    {
        List<object> items = new List<object>();

        public override Iterator CreateIterator()
        {
            return new ConcreteIterator(this);
        }

        // Get item count

        public int Count
        {
            get { return items.Count; }
        }

        // Indexer

        public object this[int index]
        {
            get { return items[index]; }
            set { items.Insert(index, value); }
        }
    }

    /// <summary>
    /// The 'Iterator' abstract class
    /// </summary>

    public abstract class Iterator
    {
        public abstract object First();
        public abstract object Next();
        public abstract bool IsDone();
        public abstract object CurrentItem();
    }

    /// <summary>
    /// The 'ConcreteIterator' class
    /// </summary>

    public class ConcreteIterator : Iterator
    {
        ConcreteAggregate aggregate;
        int current = 0;

        // Constructor

        public ConcreteIterator(ConcreteAggregate aggregate)
        {
            this.aggregate = aggregate;
        }

        // Gets first iteration item

        public override object First()
        {
            return aggregate[0];
        }

        // Gets next iteration item

        public override object Next()
        {
            object ret = null;
            if (current < aggregate.Count - 1)
            {
                ret = aggregate[++current];
            }

            return ret;
        }

        // Gets current iteration item

        public override object CurrentItem()
        {
            return aggregate[current];
        }

        // Gets whether iterations are complete

        public override bool IsDone()
        {
            return current >= aggregate.Count;
        }
    }
}
Output
Iterating over collection:
Item A
Item B
Item C
Item D

Real-world code in C#

This real-world code demonstrates the Iterator pattern which is used to iterate over a collection of items and skip a specific number of items each iteration.

using System;
using System.Collections.Generic;

namespace Iterator.RealWorld
{
    /// <summary>
    /// Iterator Design Pattern
    /// </summary>

    public class Program
    {
        public static void Main(string[] args)
        {
            // Build a collection

            Collection collection = new Collection();
            collection[0] = new Item("Item 0");
            collection[1] = new Item("Item 1");
            collection[2] = new Item("Item 2");
            collection[3] = new Item("Item 3");
            collection[4] = new Item("Item 4");
            collection[5] = new Item("Item 5");
            collection[6] = new Item("Item 6");
            collection[7] = new Item("Item 7");
            collection[8] = new Item("Item 8");

            // Create iterator

            Iterator iterator = collection.CreateIterator();

            // Skip every other item

            iterator.Step = 2;

            Console.WriteLine("Iterating over collection:");

            for (Item item = iterator.First();
                !iterator.IsDone; item = iterator.Next())
            {
                Console.WriteLine(item.Name);
            }

            // Wait for user

            Console.ReadKey();
        }
    }
    /// <summary>
    /// A collection item
    /// </summary>

    public class Item
    {
        string name;

        // Constructor

        public Item(string name)
        {
            this.name = name;
        }

        public string Name
        {
            get { return name; }
        }
    }

    /// <summary>
    /// The 'Aggregate' interface
    /// </summary>

    public interface IAbstractCollection
    {
        Iterator CreateIterator();
    }

    /// <summary>
    /// The 'ConcreteAggregate' class
    /// </summary>

    public class Collection : IAbstractCollection
    {
        List<Item> items = new List<Item>();

        public Iterator CreateIterator()
        {
            return new Iterator(this);
        }

        // Gets item count

        public int Count
        {
            get { return items.Count; }
        }

        // Indexer

        public Item this[int index]
        {
            get { return items[index]; }
            set { items.Add(value); }
        }
    }

    /// <summary>
    /// The 'Iterator' interface
    /// </summary>

    public interface IAbstractIterator
    {
        Item First();
        Item Next();
        bool IsDone { get; }
        Item CurrentItem { get; }
    }

    /// <summary>
    /// The 'ConcreteIterator' class
    /// </summary>

    public class Iterator : IAbstractIterator
    {
        Collection collection;
        int current = 0;
        int step = 1;

        // Constructor

        public Iterator(Collection collection)
        {
            this.collection = collection;
        }

        // Gets first item

        public Item First()
        {
            current = 0;
            return collection[current] as Item;
        }

        // Gets next item

        public Item Next()
        {
            current += step;
            if (!IsDone)
                return collection[current] as Item;
            else
                return null;
        }

        // Gets or sets stepsize

        public int Step
        {
            get { return step; }
            set { step = value; }
        }

        // Gets current iterator item

        public Item CurrentItem
        {
            get { return collection[current] as Item; }
        }

        // Gets whether iteration is complete

        public bool IsDone
        {
            get { return current >= collection.Count; }
        }
    }
}
Output
Iterating over collection:
Item 0
Item 2
Item 4
Item 6
Item 8

.NET Optimized code in C#

The .NET optimized code demonstrates the same real-world situation as above but uses modern, built-in .NET features, such as, generics, reflection, LINQ, lambda functions, etc. You can find an example on our Singleton pattern page.

All other patterns (and much more) are available in our Dofactory .NET product.


Not only does Dofactory .NET cover the Gang of Four and Enterprise patterns, it also includes pattern architectures, low-code, and RAD (Rapid Application Development) techniques. Accelerate development to where you can write entire solutions in just 33 days!.

This unique package will change your developer lifestyle.  Here's what is included:



#1 .NET Success Platform
  • 69 gang-of-four pattern projects
  • 46 head-first pattern projects
  • Fowler's enterprise patterns
  • Multi-tier patterns
  • Convention over configuration
  • Active Record and CQRS patterns
  • Repository and Unit-of-Work patterns
  • MVC, MVP, & MVVM patterns
  • REST patterns with Web API
  • SparkTM Rapid App Dev (RAD) data access
  • Complete Art Shop, Ecommerce App
  • Complete Analytics, Dashboard App
  • Complete Art Shop, Ecommerce App
  • Complete SaaS, Multi-Tenant App
  • Everything 100% source code


Earn income with your .NET skills
Sign up and we'll send you the best freelance opportunities straight to your inbox.
We're building the largest self-service freelancing marketplace for people like you.
Guides


vsn 3.1